

## **COMMON PRE-BOARD EXAMINATION 2022-23**



Subject: Mathematics (Standard) (041) Answer Key

Class: X
Date:
Time: 3 Hours
Max. Marks: 80

| Q.No. |                                                                                                               | Marks                                                    |
|-------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|       | SECTION - A                                                                                                   |                                                          |
|       | (Section A consists of 20 questions of 1 mark each)                                                           |                                                          |
| 1.    | (d) 7                                                                                                         | 1                                                        |
| 2.    | (d) -3                                                                                                        | 1                                                        |
| 3.    | (a) $\frac{1}{4}$                                                                                             | 1                                                        |
| 4.    | (a)no solution                                                                                                | 1                                                        |
| 5.    | (c) 1unit                                                                                                     | 1                                                        |
| 6.    | (b) 9 cm                                                                                                      | 1                                                        |
| 7.    | (a)4                                                                                                          | 1                                                        |
| 8.    | (b) $\frac{169}{144}$                                                                                         | 1                                                        |
| 9.    | (b) 2.7 cm                                                                                                    | 1                                                        |
| 10.   | (d) 6 cm                                                                                                      | 1                                                        |
| 11.   | (c) 34°                                                                                                       | 1                                                        |
| 12.   | (a) 14 cm                                                                                                     | 1                                                        |
| 13.   | (c) $126 \text{ cm}^2$                                                                                        | 1                                                        |
| 14.   | (b) Median                                                                                                    | 1                                                        |
| 15.   | (a) 59                                                                                                        | 1                                                        |
| 16.   | (b) 12.5                                                                                                      | 1                                                        |
| 17.   | $(a) \frac{4}{11}$                                                                                            | 1                                                        |
| 18.   | (b) 4sinA.cosA                                                                                                | 1                                                        |
| 19.   | (a)Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).     | 1                                                        |
| 20.   | (b)Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A). | 1                                                        |
|       | SECTION-B                                                                                                     |                                                          |
| 0.1   | (Section B consists of 5 questions of 2 marks each)                                                           | 1/ 1/ 1/                                                 |
| 21.   | $\frac{a1}{a2} = \frac{b1}{b2} \neq \frac{c1}{c2}$                                                            | $\begin{vmatrix} 1/2 + 1/2 + 1/2 \\ + 1/2 \end{vmatrix}$ |
|       | $\frac{\alpha}{12} = \frac{3}{\alpha} \neq \frac{\alpha - 3}{\alpha}$ $\alpha^2 = 36,  \alpha = \pm 6$        |                                                          |
|       |                                                                                                               |                                                          |
|       | $\alpha = 6$                                                                                                  | 1                                                        |
| 22.   | $\triangle AEB \sim \triangle DEC$ (AA similarity rule)                                                       | 1                                                        |

| $\frac{AE}{DE} = \frac{EB}{EC} = \frac{AB}{DC} \text{ (Corresponding sides are proportional)}$ $AE \times CE = BE \times DE$ 23. Join OA,OB and OC $\frac{1}{2} + \frac{1}{2}$ $\therefore \angle OCA = \angle OCB = 90^{\circ} \text{ (Theorem 10.1)}$ $Now, In \triangle OCA \text{ and } \triangle OCB$ $\angle OCA = \angle OCB = 90^{\circ}$ $OA = OB \text{ (Radii of the larger circle)}$ $OC = OC \text{ (Common)}$ $By \text{ RHS congruency}$ $\triangle OCA \cong \triangle OCB$ $1 \frac{1}{2} + \frac{1}{2}$ |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| AE x CE = BE x DE  1/2 + 1/2  23. Join OA,OB and OC  ∴ ∠OCA = ∠OCB = 90° (Theorem 10.1)  Now, In ΔOCA and ΔOCB  ∠OCA = ∠OCB = 90°  OA = OB (Radii of the larger circle)  OC = OC (Common)  By RHS congruency                                                                                                                                                                                                                                                                                                              |          |
| 23. Join OA,OB and OC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| Join OA,OB and OC  ∴ ∠OCA = ∠OCB = 90° (Theorem 10.1)  Now, In △OCA and △OCB  ∠OCA = ∠OCB = 90°  OA = OB (Radii of the larger circle)  OC = OC (Common)  By RHS congruency                                                                                                                                                                                                                                                                                                                                                |          |
| Join OA,OB and OC  ∴ ∠OCA = ∠OCB = 90° (Theorem 10.1)  Now, In △OCA and △OCB  ∠OCA = ∠OCB = 90°  OA = OB (Radii of the larger circle)  OC = OC (Common)  By RHS congruency                                                                                                                                                                                                                                                                                                                                                |          |
| ∴ ∠OCA = ∠OCB = 90° (Theorem 10.1)  Now, In △OCA and △OCB  ∠OCA = ∠OCB = 90°  OA = OB (Radii of the larger circle)  OC = OC (Common)  By RHS congruency                                                                                                                                                                                                                                                                                                                                                                   |          |
| Now, In $\triangle$ OCA and $\triangle$ OCB<br>$\angle$ OCA = $\angle$ OCB = 90°<br>OA = OB (Radii of the larger circle)<br>OC = OC (Common)<br>By RHS congruency                                                                                                                                                                                                                                                                                                                                                         |          |
| Now, In $\triangle$ OCA and $\triangle$ OCB<br>$\angle$ OCA = $\angle$ OCB = 90°<br>OA = OB (Radii of the larger circle)<br>OC = OC (Common)<br>By RHS congruency                                                                                                                                                                                                                                                                                                                                                         |          |
| Now, In $\triangle$ OCA and $\triangle$ OCB<br>$\angle$ OCA = $\angle$ OCB = 90°<br>OA = OB (Radii of the larger circle)<br>OC = OC (Common)<br>By RHS congruency                                                                                                                                                                                                                                                                                                                                                         |          |
| Now, In $\triangle$ OCA and $\triangle$ OCB<br>$\angle$ OCA = $\angle$ OCB = 90°<br>OA = OB (Radii of the larger circle)<br>OC = OC (Common)<br>By RHS congruency                                                                                                                                                                                                                                                                                                                                                         |          |
| Now, In $\triangle$ OCA and $\triangle$ OCB<br>$\angle$ OCA = $\angle$ OCB = 90°<br>OA = OB (Radii of the larger circle)<br>OC = OC (Common)<br>By RHS congruency                                                                                                                                                                                                                                                                                                                                                         |          |
| Now, In $\triangle$ OCA and $\triangle$ OCB<br>$\angle$ OCA = $\angle$ OCB = 90°<br>OA = OB (Radii of the larger circle)<br>OC = OC (Common)<br>By RHS congruency                                                                                                                                                                                                                                                                                                                                                         |          |
| ∠OCA = ∠OCB = 90°  OA = OB (Radii of the larger circle)  OC = OC (Common)  By RHS congruency                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| OA = OB (Radii of the larger circle) OC = OC (Common) By RHS congruency                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| OC = OC (Common) By RHS congruency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| By RHS congruency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| $  \wedge OCA \simeq \wedge OCR $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>2</b> |
| $\therefore$ CA = CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| 24. Here,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| $\Theta = 30^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| 1 = 17.6  cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| $1 = \theta/360 \text{ x}$ $2\pi r = 17.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| $1/12 \times 22/7 \times r = 8.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| $r = 8.8 \times 12 \times 7 / 22 = 16.8 \text{ cm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| Parimeter = 1 + 2r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .,       |
| Perimeter = $1+21$<br>Perimeter = $\theta/360 \times 2\pi r + 2r$                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ′2       |
| $= 60 / 360 \times 2 \times 22/7 \times 10.5 + 21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| - 00 / 300 K Z K ZZ/ / K 10.3   Z1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| $= 1/6 \times 3 \times 22 + 21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| = 17.6  A  3  A  22 + 21 $= 11 + 21 = 33  cm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| - 11 + 21 - 33 CIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 25. $\tan^2 45^\circ - \cos^2 30^\circ = x \tan^2 60^\circ \cos^2 45^\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| $= (1)^2 - (\frac{\sqrt{3}}{2})^2 = x (\sqrt{3})^2 (\frac{1}{\sqrt{2}})^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| $\mathbf{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| $\frac{1}{2} = x (3 \times \frac{1}{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| $x = 1/3$ $\frac{1}{2} + \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>2</b> |
| OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| If $\tan\Theta = \frac{1}{\sqrt{3}}$ , $\Theta = 30^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| $\frac{1}{\sqrt{3}}$ , $O = 30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| $\frac{cosec^2\theta - sec^2\theta}{cosec^2\theta + sec^2\theta} = \frac{cosec^230^\circ - sec^230^\circ}{cosec^230^\circ + sec^230^\circ}$                                                                                                                                                                                                                                                                                                                                                                               |          |
| $\cos^2\theta + \sec^2\theta + \csc^230^{\circ} + \sec^230^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |

|            | $=\frac{2-4/3}{2+4/3} = 2/10 = 1/5$                                                                                                                                   | 1/2 + 1/2                   |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|            | SECTION-C (Section C consists of 6 questions of 3 marks each)                                                                                                         |                             |
|            | (Section C consists of a questions of 3 marks each)                                                                                                                   |                             |
| 26.        | Let us assume to the contrary that $9 - 5\sqrt{3}$ is rational,                                                                                                       |                             |
|            | $9 - 5\sqrt{3} = a/b$ , a and b are integers and $b \ne 0$ .<br>$- 5\sqrt{3} = a/b - 9$                                                                               |                             |
|            | $5\sqrt{3} = a/b-9$<br>$\sqrt{3} = a-9b/-5b$                                                                                                                          |                             |
|            | a, -9b and $-5b$ are integers $a-9b/-5b$ is rational.                                                                                                                 |                             |
|            | $\sqrt{3}$ is rational, but we know that $\sqrt{3}$ is irrational.                                                                                                    | 1 ½                         |
|            | Our assumption is wrong.                                                                                                                                              |                             |
|            | $9 - 5\sqrt{3}$ is irrational                                                                                                                                         |                             |
|            |                                                                                                                                                                       |                             |
|            |                                                                                                                                                                       | 1½                          |
| 27         | $\alpha + \beta = 2$ $\alpha\beta = 2$ $y^2$ $2y + 2$                                                                                                                 | 1 , 1 , 1                   |
| 27.<br>28. | $\alpha + \beta = 3,  \alpha\beta = 2,  x^2 - 3x + 2$ $X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $X = \frac{4\sqrt{3} \pm \sqrt{48 - 48}}{2 \times 3}$                  | $\frac{1+1+1}{\frac{1}{2}}$ |
| 20.        | $X = \frac{2a}{2a}$                                                                                                                                                   | , 2                         |
|            | $X = \frac{4\sqrt{3} \pm \sqrt{48 - 48}}{2 \times 3}$                                                                                                                 | 1.1/                        |
|            | $X = \frac{4\sqrt{3} \pm 0}{6} = 2\sqrt{3} / 3$                                                                                                                       | 1 ½                         |
|            | OR                                                                                                                                                                    | 1                           |
|            | $b^2 - 4ac = 0$                                                                                                                                                       |                             |
|            | $4 (k-5)^2 - 4(k-5) (2) = 0$<br>4(k-5) (k-7) = 0                                                                                                                      | 1/2                         |
|            | K = 5, k = 7                                                                                                                                                          |                             |
|            | Ans: $K = 5$                                                                                                                                                          | 1                           |
|            |                                                                                                                                                                       | 1                           |
|            |                                                                                                                                                                       | 1/2                         |
| 29.        | $(\sin\Theta + \csc\Theta)^2 + (\cos\Theta + \sec\Theta)^2 =$                                                                                                         |                             |
|            | $\sin^2\Theta + \csc^2\Theta + 2\sin\Theta\csc\Theta + \cos^2\Theta + \sec^2\Theta + 2\cos\Theta\sec\Theta$                                                           | 1                           |
|            | $= (\sin^2\Theta + \cos^2\Theta) + \sec^2\Theta + \csc^2\Theta + 2\sin\Theta \csc\Theta + 2\cos\Theta \sec\Theta$ $= 1 + 1 + \tan^2\Theta + 1 + \cot^2\Theta + 2 + 2$ | 1                           |
|            | $= 7 + \tan^2\Theta + \cot^2\Theta$                                                                                                                                   | 1                           |
| 30.        | AB = AC, $AR = AQ$ , $CR = CP$ , $BQ = BP$ (Theorem 10.1)(1)                                                                                                          |                             |
|            | (Perimeter of $\triangle ABC$ ) = $AB + BC + AC$<br>= $AB + CP + BP + AC$                                                                                             |                             |
|            | = AB + CI + BI + AC $= (AB + CR) + (BQ + AC) (From (1))$                                                                                                              | 1                           |
|            | = AR + AQ = AQ + AQ = 2AQ                                                                                                                                             |                             |
|            | $AQ = \frac{1}{2} \text{ (Perimeter of } \Delta ABC)$                                                                                                                 | 1                           |
|            | OR                                                                                                                                                                    |                             |

|     | In the figure, P, Q, R and S are the points touching the circle and sides AB, BC, CD and DA of the quadrilateral ABCD respectively.                                                                                                                                                                                                                                                                |       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                              | 1     |
|     | From the figure, we observe that OA bisects $\angle$ SOP.  So, $\angle a = \angle b$ (i)  Similarly, $\angle c = \angle d$ (ii) $\angle e = \angle f$ (iii) $\angle g = \angle h$ (iv) $\therefore 2(\angle a + \angle h + \angle e + \angle d) = 360^{\circ}$ $\Rightarrow (\angle a + \angle h) + (\angle e + \angle d) = 180^{\circ}$ $\Rightarrow \angle$ AOB $+ \angle$ DOC $= 180^{\circ}$ . | 1     |
|     | Similarly, ∠AOD + ∠BOC = 180°  Thus, opposite sides of quadrilateral ABCD subtend supplementary angles at the centre of a circle. Hence, Proved.                                                                                                                                                                                                                                                   | 1     |
| 31. | (i)a multiple of $7 = 14/100 = 7/50$<br>(ii)a perfect square number $= 9/100$<br>(iii)a two digit number $= 90/100 = 9/10$                                                                                                                                                                                                                                                                         | 1+1+1 |
|     | SETCION-D (Section D consists of 4 questions of 5 marks each)                                                                                                                                                                                                                                                                                                                                      |       |
| 32. | Let the speed of the train be x km/hr.                                                                                                                                                                                                                                                                                                                                                             |       |
|     | Speed when increased by 5 km/ $hr = (x + 100)$ km/ $hr$                                                                                                                                                                                                                                                                                                                                            | 1/2   |
|     | 1500 / x - 1500 / x + 100 = 1/2                                                                                                                                                                                                                                                                                                                                                                    | 1     |
|     | 1500 ( $x + 100 - x$ )/ $x^2 + 100x = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                 | 1     |
|     | $300000 = x^2 + 100x$ $x^2 + 100x - 300000 = 0$                                                                                                                                                                                                                                                                                                                                                    | 1 ½   |
|     | (x-500)(x + 600)=0<br>X = -500, $x = 600The speed of the train is 600 km/hr.$                                                                                                                                                                                                                                                                                                                      | 1     |
|     | Lets say Arun scored marks in Hindi = $x$<br>And he scored marks in English = $y$<br>He scored total marks in hindi and English = $30$<br>x + y = 30(1)<br>If Arun scored two marks more in hindi than his score would be = $(x + 2)$<br>If he scored 3 marks less in English than his score would be = $(x + 3)$<br>Product of the marks would be 210                                             | 1     |

| $(x+2)(y-3) = 210 \dots (2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Solving equation 1 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   |
| We find the value of y from equation 1 and put that value in equation 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _   |
| The find the value of y from equation 1 and put that value in equation 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| y = 30-x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| Put value of y in equation 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| $\Rightarrow (x+2)(30-x-3) = 210$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| $x^2 -25x+156 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| x-12)(x-13)=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1   |
| x = 12  and  x = 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1   |
| Hindi = 12, $English = 18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/2 |
| Hindi = 13, $English = 17$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| Timor 10 , English 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 33.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| $\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}}}}}}}}}}$ |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| E G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /-  |
| D C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| AB    DC & EF  DC, therefore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   |
| AB    EF    DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| Join AC which intersects EF at G. In △ADC,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| EG    DC [∵EF is the extension of EG]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| EG    BC [ 'El is the extension of EG]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| $AE/ED = AG/GC \rightarrow (1)$ [Converse of BPT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   |
| · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| Similarly in △ABC, AB∥GF, Therefore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| Similarly in $\triangle$ ABC, AB    GF, Therefore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| $BF/FC = AG/GC \rightarrow (2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2 |
| From (1) & (2),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| AE/ED = BF/FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/2 |
| (ii) AD/DB = AE/EC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| 1.5/3 = 1/EC, $EC = 2 cm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 ½ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 34.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| $\wedge^{\circ}$ T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| /h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| T 4 5 cm D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| I     I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 30 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 30 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 30 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17  |
| 13 cm 30 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/2 |
| 13 cm 30 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/2 |
| 13 cm 30 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/2 |

|     | Radius of cone, cylinder and hemi sphere =5cm                                                                                     |                 |               |                                     |      |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|-------------------------------------|------|
|     | r=5cm for hemisphere cylinder and cone.<br>Height of cone h =30-5-13=12                                                           |                 |               |                                     |      |
|     | L = $\sqrt{h^2 + r^2}$ = $\sqrt{169}$ = 13 cm                                                                                     |                 |               |                                     | 1/2  |
|     | $L = \sqrt{h^2 + T^2} = \sqrt{169} = 13 \text{ cm}$<br>Area of canvas required= CSA of hemisphere + CSA of cylinder + CSA of cone |                 |               |                                     |      |
|     | A = $2\pi r^2 + 2\pi rH + \pi rI$                                                                                                 |                 |               |                                     | 1    |
|     | $A = \pi r (2r + 2h + 1)$                                                                                                         |                 |               |                                     | 1 ½  |
|     | $= 22/7 \times 5 (2\times 5 + 2\times 13 + 13)$                                                                                   |                 |               |                                     | 1 72 |
|     | $= 770 \mathrm{cm}^2$                                                                                                             |                 |               |                                     |      |
|     | OR<br>Cuboid:                                                                                                                     |                 |               |                                     | 1.1/ |
|     | L = 15  m, B = 7                                                                                                                  | 7 m and $H = 8$ | m, respective | ely. Also,                          | 1 ½  |
|     |                                                                                                                                   | •               |               | its height = 15 m.                  | 1/2  |
|     |                                                                                                                                   |                 | olume of the  | cuboid $+\frac{1}{2}$ volume of the |      |
|     | cylinder = LBH                                                                                                                    |                 | 22            |                                     | 1    |
|     | :                                                                                                                                 |                 | ,             | × 3.5 × 3.5 × 15 )                  | 1 ½  |
|     | $= 840 + 288.75 = 1128.75 \text{ m}^3$ The total space accurried by the machinery and 20 workers =                                |                 |               |                                     |      |
|     | The total space occupied by the machinery and 20 workers = $= 300 + (20 \times 0.08) = 300 + 1.6 = 31.6 \text{ m}^3$              |                 |               |                                     |      |
|     | The volume of the air, when there are machinery and workers = $= 1128.75 - 301.6 = 827.15 \text{ m}^3$                            |                 |               |                                     | 1    |
|     |                                                                                                                                   |                 |               |                                     | 1/2  |
| 35. | CI                                                                                                                                | f               | cf            |                                     |      |
|     | 0-10                                                                                                                              | 10              | 10            |                                     |      |
|     | 10-20                                                                                                                             | f1              | 10 +f1        |                                     |      |
|     | 20-30                                                                                                                             | 25              | 35+f1         |                                     |      |
|     | 30-40                                                                                                                             | 30              | 65+f1         |                                     |      |
|     | 40-50                                                                                                                             | f2              | 65+f1 +f2     |                                     |      |
|     | 50-60                                                                                                                             | 10              | 75+f1+f2      |                                     | 1    |
|     | 75 + f1 + f2 - f                                                                                                                  | 100 f1 ± f7     | 2 = 25        | (1)                                 |      |
|     | 75 + f1 + f2 = 100, $f1 + f2 = 25$ (1)                                                                                            |                 |               |                                     | 1    |
|     | _                                                                                                                                 |                 |               | h lies in the range $30 - 40$ .     |      |
|     | Therefore, $30 - 40$ is the median class. So,                                                                                     |                 |               |                                     |      |
|     | L = 30 $N = 100$                                                                                                                  |                 |               |                                     |      |
|     | f = 30                                                                                                                            |                 |               |                                     |      |
|     | cf = 35 + x                                                                                                                       |                 |               |                                     | 1/2  |
|     | h = 10 - 0 = 10                                                                                                                   | 1               | $N_{-Cf}$     |                                     | 1/2  |
|     | $median = l + \left(\frac{\frac{N}{2} - Cf}{f}\right)h$                                                                           |                 |               |                                     | /2   |
|     |                                                                                                                                   |                 |               |                                     |      |
|     |                                                                                                                                   |                 |               |                                     | 1    |

|     | (50 (64)25)                                                                      |                             |
|-----|----------------------------------------------------------------------------------|-----------------------------|
|     | $median = 30 + \left(\frac{50 - (f_{1} + 35)}{30}\right) 10 = 32$                |                             |
|     |                                                                                  | 1/ . 1/                     |
|     | f1 = 9                                                                           | $\frac{1}{2} + \frac{1}{2}$ |
|     | f2 = 16                                                                          |                             |
|     |                                                                                  |                             |
| 26  | SECTION-E (Case study based questions are compulsory)                            |                             |
| 36. | L(5,10) ,to B(0,7),P(8,6) and N(2,6)                                             | 1                           |
|     | 1.DISTANCE: LB = $\sqrt{5^2 + 3^2} = \sqrt{34}$                                  | 1                           |
|     | 2.ratio (m:n) = $3:2$ ,                                                          |                             |
|     | coordinate of Kota (K).= $\left(\frac{mx2+nx1}{m+n}, \frac{my2+ny1}{m+n}\right)$ | 1/2                         |
|     | ntin ntin                                                                        | /2                          |
|     | $= \left(\frac{3(0)+2(5)}{5}, \frac{3(7)+2(10)}{5}\right)$                       |                             |
|     |                                                                                  |                             |
|     | = (2, 31/5)                                                                      | 1/2                         |
|     | $3.NL = \sqrt{25} = 5 \text{ units}$                                             |                             |
|     | $NP = \sqrt{36} = 6$ units                                                       |                             |
|     | $LP = \sqrt{25} = 5$                                                             |                             |
|     | NLP is an isosceles triangle                                                     | 2                           |
|     | OR                                                                               |                             |
|     | L(5,10), P(8,6)                                                                  |                             |
|     | the Point on y a-axis be (0,y).                                                  |                             |
|     | M(0,Y)                                                                           |                             |
|     | $MP^2 = ML^2$                                                                    |                             |
|     | $(0-5)^2 + (y-10)^2 = (0-8)^2 + (y-6)^2$                                         |                             |
|     | $25 + y^2 - 20y + 100 = 64 + y^2 - 12y + 36$                                     | 2                           |
|     | -8y = -25, $y = 25/8$ , The required point $(0, 25/8)$ .                         |                             |
| 37  | 1.51,49,47,                                                                      | 1                           |
|     | 2.a = First term = 51 secs, d = -2                                               |                             |
|     | last term $= 31$                                                                 | 2                           |
|     | 31 = 51 + (n - 1)(-2)                                                            | 2                           |
|     | =>10=n-1                                                                         |                             |
|     | => n = 11                                                                        |                             |
|     | 11 Terms                                                                         |                             |
|     | OR                                                                               |                             |
|     | 35 = 51 + (n - 1)(-2)                                                            | 2                           |
|     | => -16 = -2n + 2, $n = 9$                                                        |                             |
|     | 3. $d = (x + 10) - 2x = 10$ —x                                                   | 1                           |
|     | d = (3x+2) - (x+10) = 2x - 8, x = 8                                              |                             |
| 38. | 1. The angle of elevation = $45^{\circ}$                                         | 1+2+1                       |
|     | 2.Diatance = $14\sqrt{3}$ m                                                      |                             |
|     | OR                                                                               |                             |
|     | Height of the vertical tower = $20 \sqrt{3}$ m                                   |                             |
|     | 3. The elevation of the sun = $45^{\circ}$                                       |                             |
|     |                                                                                  |                             |
|     |                                                                                  |                             |