COMMON PRE-BOARD EXAMINATION 2022-23

Subject: Mathematics (Standard) (041) Answer Key

Class: X
Date:

Q.No.		Marks
	SECTION - A	
	(Section A consists of 20 questions of 1 mark each)	
1.	(d) 7	1
2.	(d) -3	1
3.	(a) $\frac{1}{4}$	1
4.	(a)no solution	1
5.	(c) 1unit	1
6.	(b) 9 cm	1
7.	(a) 4	1
8.	(b) $\frac{169}{144}$	1
9.	(b) 2.7 cm	1
10.	(d) 6 cm	1
11.	(c) 34°	1
12.	(a) 14 cm	1
13.	(c) $126 \mathrm{~cm}^{2}$	1
14.	(b) Median	1
15.	(a) 59	1
16.	(b) 12.5	1
17.	(a) $\frac{4}{11}$	1
18.	(b) $4 \sin \mathrm{~A} \cdot \cos \mathrm{~A}$	1
19.	(a)Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).	1
20.	(b)Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A).	1
	(Section B consists of 5 questions of 2 marks each)	
21.	$\begin{aligned} & \frac{a 1}{a 2}=\frac{b 1}{b 2} \neq \frac{c 1}{c 2} \\ & \frac{\alpha}{12}=\frac{3}{\alpha} \neq \frac{\alpha-3}{\alpha} \\ & \alpha^{2}=36, \quad \alpha= \pm 6 \\ & \alpha=6 \end{aligned}$	$\begin{aligned} & 1 / 2+1 / 2+1 / 2 \\ & +1 / 2 \end{aligned}$
22.	$\triangle \mathrm{AEB} \sim \triangle \mathrm{DEC}$ (AA similarity rule)	1

	$\frac{A E}{D E}=\frac{E B}{E C}=\frac{A B}{D C}($ Corresponding sides are proportional) $\mathrm{AE} \times \mathrm{CE}=\mathrm{BE} \times \mathrm{DE}$	$1 / 2+1 / 2$
23.	Join OA,OB and OC $\therefore \angle \mathrm{OCA}=\angle \mathrm{OCB}=90^{\circ}(\text { Theorem 10.1 })$ Now, In \triangle OCA and $\triangle O C B$ $\angle \mathrm{OCA}=\angle \mathrm{OCB}=90^{\circ}$ $\mathrm{OA}=\mathrm{OB}$ (Radii of the larger circle) OC = OC (Common) By RHS congruency $\begin{aligned} & \triangle \mathrm{OCA} \cong \triangle \mathrm{OCB} \\ & \therefore \mathrm{CA}=\mathrm{CB} \end{aligned}$	$11 / 2+1 / 2$
24.	Here, $\begin{aligned} & \Theta=30^{\circ} \\ & 1=17.6 \mathrm{~cm} \\ & 1=\theta / 360 \mathrm{x} \quad 2 \pi \mathrm{r}=17.6 \end{aligned}$ $1 / 12 \times 22 / 7 \times r=8.8$ $\mathrm{r}=8.8 \times 12 \times 7 / 22=16.8 \mathrm{~cm}$ OR $\begin{aligned} \text { Perimeter } & =1+2 \mathrm{r} \\ \text { Perimeter } & =\theta / 360 \times 2 \pi \mathrm{r}+2 \mathrm{r} \\ & =60 / 360 \times 2 \times 22 / 7 \times 10.5+21 \\ & =1 / 6 \times 3 \times 22+21 \\ & =11+21=33 \mathrm{~cm} \end{aligned}$	$1 / 2+1 / 2$ $1 / 2+1 / 2$ $1 / 2$ $1 / 2$ 1
25.	$\begin{gathered} \tan ^{2} 45^{\circ}-\cos ^{2} 30^{\circ}=x \tan ^{2} 60^{\circ} \cos ^{2} 45^{\circ} \\ =(1)^{2}-\left(\frac{\sqrt{3}}{2}\right)^{2}=x(\sqrt{3})^{2}\left(\frac{1}{\sqrt{2}}\right)^{2} \\ \frac{1}{2}=x(3 \times 1 / 2) \\ x=1 / 3 \end{gathered}$ OR If $\tan \Theta=\frac{1}{\sqrt{3}}, \Theta=30^{\circ}$ $\frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{\operatorname{cosec}^{2} \theta+\sec ^{2} \theta}=\frac{\operatorname{cosec}^{2} 30^{\circ}-\sec ^{2} 30^{\circ}}{\operatorname{cosec}^{2} 30^{\circ}+\sec ^{2} 30^{\circ}}$	$\begin{gathered} 1 \\ 1 / 2+1 / 2 \\ 1 / 2 \\ 1 / 2 \end{gathered}$

	$=\frac{2-4 / 3}{2+4 / 3}=2 / 10=1 / 5$	$1 / 2+1 / 2$
	$\xrightarrow[\text { (Section C consists of } 6 \text { questions of } 3 \text { marks each) }]{\text { SECTION-C }}$	
26.	Let us assume to the contrary that $9-5 \sqrt{3}$ is rational, $9-5 \sqrt{3}=a / b$, a and b are integers and $b \neq 0$. $\begin{aligned} -5 \sqrt{3} & =a / b-9 \\ \sqrt{3} & =a-9 b /-5 b \end{aligned}$ $\mathrm{a},-9 \mathrm{~b}$ and -5 b are integers $\mathrm{a}-9 \mathrm{~b} /-5 \mathrm{~b}$ is rational. $\sqrt{3}$ is rational, but we know that $\sqrt{3}$ is irrational. Our assumption is wrong. $9-5 \sqrt{3}$ is irrational	$1 \frac{1}{2}$
		11/2
27.	$\alpha+\beta=3, \quad \alpha \beta=2, \quad x^{2}-3 x+2$	$1+1+1$
28.	$\begin{aligned} & X=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\ & X=\frac{4 \sqrt{3} \pm \sqrt{48-48}}{2 \times 3} \\ & X=\frac{4 \sqrt{3} \pm 0}{6}=2 \sqrt{3} / 3 \end{aligned}$ OR $\begin{aligned} & \mathrm{b}^{2}-4 \mathrm{ac}=0 \\ & 4(\mathrm{k}-5)^{2}-4(\mathrm{k}-5)(2)=0 \\ & 4(\mathrm{k}-5)(\mathrm{k}-7)=0 \\ & \mathrm{~K}=5, \mathrm{k}=7 \\ & \text { Ans: } \mathrm{K}=5 \end{aligned}$	$\begin{aligned} & \hline 1 / 2 \\ & 11 / 2 \\ & 1 \\ & 1 / 2 \\ & 1 \\ & 1 \\ & 1 / 2 \\ & \hline \end{aligned}$
29.	$\begin{aligned} & (\sin \Theta+\operatorname{cosec} \theta)^{2}+(\cos \Theta+\sec \Theta)^{2}= \\ & \sin ^{2} \Theta+\operatorname{cosec}^{2} \Theta+2 \sin \Theta \operatorname{cosec} \Theta+\cos ^{2} \Theta+\sec ^{2} \Theta+2 \cos \Theta \sec \Theta \\ & =\left(\sin ^{2} \Theta+\cos ^{2} \Theta\right)+\sec ^{2} \Theta+\operatorname{cosec}^{2} \Theta+2 \sin \Theta \operatorname{cosec} \Theta+2 \cos \Theta \sec \Theta \\ & =1+1+\tan ^{2} \Theta+1+\cot ^{2} \Theta+2+2 \\ & =7+\tan ^{2} \Theta+\cot ^{2} \Theta \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
30.	$\begin{aligned} & \mathrm{AB}=\mathrm{AC}, \mathrm{AR}=\mathrm{AQ}, \\ & \begin{aligned} &(\text { Perimeter of } \triangle \mathrm{ABC})=\mathrm{AB}+\mathrm{BC}, \mathrm{BQ}=\mathrm{BP}(\text { Theorem 10.1)--- } \\ &=\mathrm{AB}+\mathrm{CP}+\mathrm{BP}+\mathrm{AC} \\ &=(\mathrm{AB}+\mathrm{CR})+(\mathrm{BQ}+\mathrm{AC})(\text { From }(1)) \\ &=\mathrm{AR}+\mathrm{AQ}=\mathrm{AQ}+\mathrm{AQ}=2 \mathrm{AQ} \\ & \mathrm{AQ}=\frac{1}{2}(\text { Perimeter of } \triangle \mathrm{ABC}) \\ & \text { OR } \end{aligned} \end{aligned}$	1 1

	In the figure, P, Q, R and S are the points touching the circle and sides $A B, B C, C D$ and $D A$ of the quadrilateral $A B C D$ respectively. From the figure, we observe that OA bisects $\angle \mathrm{SOP}$. So, $\angle a=\angle b$... (i) Similarly, $\angle c=\angle d$... (ii) $\angle e=\angle f$ $\angle g=\angle h$ $\begin{align*} \therefore \quad 2(\angle a+\angle h+\angle e+\angle d) & =360^{\circ} \tag{iii}\\ \Rightarrow \quad(\angle a+\angle h)+(\angle e+\angle d) & =180^{\circ} \tag{iv}\\ \Rightarrow \quad \angle \mathrm{AOB}+\angle \mathrm{DOC} & =180^{\circ} . \\ \text { Similarly, } \quad \angle \mathrm{AOD}+\angle \mathrm{BOC} & =180^{\circ} \end{align*}$ Thus, opposite sides of quadrilateral ABCD subtend supplementary angles at the centre of a circle. Hence, Proved.	1 1 1
31.	(i)a multiple of $7=14 / 100=7 / 50$ (ii)a perfect square number $=9 / 100$ (iii) a two digit number $=90 / 100=9 / 10$	1+1+1
	$\frac{\text { SETCION-D }}{\text { (Section D consists of } 4 \text { questions of } 5 \text { marks each) }}$	
32.	Let the speed of the train be $\mathrm{xkm} / \mathrm{hr}$. Speed when increased by $5 \mathrm{~km} / \mathrm{hr}=(\mathrm{x}+100) \mathrm{km} / \mathrm{hr}$ $\begin{aligned} & 1500 / x-1500 / x+100=1 / 2 \\ & 1500(x+100-x) / x^{2}+100 x=1 / 2 \\ & 300000=x^{2}+100 x \\ & x^{2}+100 x-300000=0 \\ & (x-500)(x+600)=0 \\ & X=-500, x=600 \end{aligned}$ The speed of the train is $600 \mathrm{~km} / \mathrm{hr}$. OR Lets say Arun scored marks in Hindi $=x$ And he scored marks in English = y He scored total marks in hindi and English $=30$ $\begin{equation*} x+y=30 \tag{1} \end{equation*}$ If Arun scored two marks more in hindi than his score would be $=(x+2)$ If he scored 3 marks less in English than his score would be $=(x+3)$ Product of the marks would be 210	$1 / 2$ 1 1 $11 / 2$ 1 1

$(\mathrm{x}+2)(\mathrm{y}-3)=210$
Solving equation 1 and 2
We find the value of y from equation 1 and put that value in equation 2

$$
y=30-x
$$

Put value of y in equation 2

$$
\begin{gathered}
\Rightarrow(x+2)(30-x-3)=210 \\
x^{2}-25 x+156=0 \\
x-12)(x-13)=0 \\
x=12 \text { and } x=13 \\
\text { Hindi }=12, \text { English }=18 \\
\text { Hindi }=13, \text { English }=17 .
\end{gathered}
$$

$\mathrm{AB} \| \mathrm{DC} \& \mathrm{EF}| | \mathrm{DC}$, therefore
AB || EF || DC
Join AC which intersects EF at G . In $\triangle \mathrm{ADC}$,
$\mathrm{EG} \| \mathrm{DC} \quad[\because \mathrm{EF}$ is the extension of EG$]$
$\mathrm{AE} / \mathrm{ED}=\mathrm{AG} / \mathrm{GC} \rightarrow(1)[$ Converse of BPT)
Similarly in $\triangle A B C, A B \| G F$, Therefore
Similarly in $\triangle A B C$, $A B \| G F$, Therefore
$\mathrm{BF} / \mathrm{FC}=\mathrm{AG} / \mathrm{GC} \rightarrow(2)$
From (1) \& (2) ,
$\mathrm{AE} / \mathrm{ED}=\mathrm{BF} / \mathrm{FC}$
(ii) $\mathrm{AD} / \mathrm{DB}=\mathrm{AE} / \mathrm{EC}$
$1.5 / 3=1 / \mathrm{EC}$,
$\mathrm{EC}=2 \mathrm{~cm}$
34.

Height of the cylindrical part $(\mathrm{H})=13 \mathrm{~cm}$

	$\begin{gathered} \text { median }=30+\left(\frac{50-(f 1+35}{30}\right) 10=32 \\ f 1=9 \\ \mathrm{f} 2=16 \end{gathered}$	$1 / 2+1 / 2$
	SECTION-E (Case study based questions are compulsory)	
36.	$\mathrm{L}(5,10)$,to $\mathrm{B}(0,7), \mathrm{P}(8,6)$ and $\mathrm{N}(2,6)$ 1.DISTANCE: $\mathrm{LB}=\sqrt{5^{2}+3^{2}}=\sqrt{34}$ 2.ratio (m:n) $=3: 2$, coordinate of $\operatorname{Kota}(\mathrm{K})=\left(\frac{m x 2+n x 1}{m+n}, \frac{m y 2+n y 1}{m+n}\right)$ $=\left(\frac{3(0)+2(5)}{5}, \frac{3(7)+2(10)}{5}\right)$ $=(2,31 / 5)$ $\begin{aligned} 3 . \mathrm{NL} & =\sqrt{25}=5 \text { units } \\ \mathrm{NP} & =\sqrt{36}=6 \text { units } \\ \mathrm{LP} & =\sqrt{25}=5 \end{aligned}$ NLP is an isosceles triangle OR $\mathrm{L}(5,10), \mathrm{P}(8,6)$ the Point on y a-axis be $(0, \mathrm{y})$. $\mathrm{M}(0, \mathrm{Y})$ $\mathrm{MP}^{2}=\mathrm{ML}^{2}$ $(0-5)^{2}+(y-10)^{2}=(0-8)^{2}+(y-6)^{2}$ $25+y^{2}-20 y+100=64+y^{2}-12 y+36$ $-8 y=-25, \quad y=25 / 8$, The required point $(0,25 / 8)$.	1 $1 / 2$ $1 / 2$ 2
37	$\begin{aligned} & 1.51,49,47, \ldots \ldots \ldots \ldots \ldots \ldots \\ & 2 . a=\text { First term }=51 \text { secs }, \mathrm{d}=-2 \\ & \text { last term }=31 \\ & 31=51+(n-1)(-2) \\ & \Rightarrow 10=n-1 \\ & \Rightarrow \mathrm{n}=11 \\ & 11 \text { Terms } \\ & \\ & 35=51+(n-1)(-2) \\ & =>-16=-2 n+2, \quad n=9 \\ & \begin{array}{l} \text { 3. } d=(x+10)-2 x=10-x \\ d=(3 x+2)-(x+10)=2 x-8, x=8 \end{array} \end{aligned}$	1 2 2 1
38.	1.The angle of elevation $=45^{\circ}$ 2. Diatance $=14 \sqrt{3} \mathrm{~m}$ Height of the vertical tower $=20 \sqrt{\text { OR }} \mathbf{~ m}$ 3. The elevation of the sun $=45^{\circ}$	1+2+1

